

Available online at www.sciencedirect.com

SCIENCE DIRECT.

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 2084–2090

N-Thiolated β-lactams: A new family of anti-*Bacillus* agents

Edward Turos,^{a,*} Timothy E. Long,^a Bart Heldreth,^a J. Michelle Leslie,^a G. Suresh Kumar Reddy,^a Yang Wang,^a Cristina Coates,^a Monika Konaklieva,^{a,†} Sonja Dickey,^b Daniel V. Lim,^b Eduardo Alonso^c and Javier Gonzalez^c

^aDepartment of Chemistry, 4202 East Fowler Avenue, CHE 207, University of South Florida, Tampa, FL 33620, USA

^bDepartment of Biology, 4202 East Fowler Avenue, University of South Florida, Tampa, FL 33620, USA

^cDepartment of e Ouimica Organica, Universidad de Oviedo, 37006 Oviedo, Spain

Received 16 December 2005; revised 13 January 2006; accepted 13 January 2006 Available online 13 February 2006

Abstract—This report describes the evaluation of N-thiolated β-lactam antibiotics as potential anti-Bacillus agents. N-Thiolated β-lactams are a new family of antibacterials that previously have been found to selectively inhibit the growth of Staphylococcus bacteria over many other genera of microbes. From the data presented herein, these lactams similarly inhibit a variety of Bacillus species, including Bacillus anthracis. The preliminary structure—activity studies suggest that there is a need to balance the lipophilic character of the C_3/C_4 groups in order to obtain optimal anti-Bacillus activity. Elongation or extensive branching of the organothio substitutent diminishes antibacterial effects, with the sec-butylthio derivative providing the strongest activity. © 2006 Elsevier Ltd. All rights reserved.

Bacillus anthracis is a rod-shaped Gram-positive bacterium that is the causative agent of anthrax infections. ^{1,2} If inhaled, spores of *B. anthracis* rapidly migrate to lymphonodes of the lungs, where they begin to germinate and release toxins that cripple the immune response, causing bacteremia, toxemia, and frequently, death. ³ Concerns about the possible use of *B. anthracis* as a biological weapon have led to widespread efforts to prevent or treat anthrax infections with vaccine or antibacterial drug development, and to detect the microbe. ^{4,5}

Our laboratory has recently identified a new family of anti-MRSA agents, *N*-thiolated β-lactams 1, which have a mode of action distinct from that of all other β-lactam antibiotics. Rather than interfering directly with cell wall biosynthesis through irreversible acylation of penicillin binding transpeptidases, these compounds seem to affect cellular processes through transfer of the *N*-organothio group to a bacterial thiol. We also note that these lactams exert anti-proliferative properties against only a narrow range of bacterial genera, most significantly, *Staphylococcus* (including MRSA), *Micrococcus*, and *Neisseria*. This

$$\begin{array}{c}
O \\
N \\
R^1
\end{array}$$

$$\begin{array}{c}
R^2 \\
1
\end{array}$$

The lead compound in this study was N-methylthiosubstituted lactam 1a, which in previous studies was found to have one of the most potent antigrowth activities against Staphylococcus bacteria. Prior studies on the overall structure–activity features of additional analogues of 1a determined that substituents at the C₃ and C₄ centers of the lactam ring exerted rather subtle effects on anti-MRSA activity, while relative and absolute stereochemistry at these locations was largely inconsequential. This led to the suggestion that the mode of action of the lactams requires passage of the lactam molecule through the bacterial membrane prior to interaction with a cytoplasmic thiol.

selectivity seems to be related to the levels and types of cellular thiols present in each microbe that is sensitive to the lactams, not to whether the microbes are Gram-positive or Gram-negative classes. Given that *Staphylococcus* and *Bacillus* are both prominent members of the *Bacillales* taxonomic order of bacteria, we therefore turned to investigate whether these compounds could possess antibacterial properties against *Bacillus* spp.

Keywords: *N*-Thiolated β-lactams; Anthrax; *Bacillus*; SAR; Antibiotics. * Corresponding author. Tel.: +1 813 974 7312; fax: +1 813 974 1733; e-mail: eturos@shell.cas.usf.edu

[†] Present address: Department of Chemistry, American University, Washington, DC 20016, USA.

1. Microbiological testing of β-lactam analogues

In this study, we investigated the anti-*Bacillus* properties of a select number of differentially substituted β -lactams based on structure 1. These analogues were prepared in racemic form according to our previous reports. The β -lactams were individually tested for antibacterial activity against *B. anthracis* and six other species of *Bacillus* by the Kirby–Bauer method of well diffusion on agar plates. Previously, we have demonstrated that the growth inhibition zone sizes for *N*-methylthio β -lactams against *Staphylococcus* correlate well with their minimum inhibitory concentrations (MICs) obtained from broth dilution experiments, and thus represent a reliable way to gauge bioactivity within a closely related series of analogues.

2. C₃-substituted lactams

The first series of compounds examined in our study consists of C₃-oxygenated lactams **1b–e**. The selection of these five compounds was made based on their different structural features to evaluate the effects of lipophilicity and polarity on anti-*Bacillus* activity.

The growth inhibition zones observed for these compounds against the seven *Bacillus* microbes are given in Table 1. Lactams **1b** and **1c** showed enhanced activities compared to C₃-methoxy lactam **1a**, while the methoxymethyl ether and benzoyl ester derivatives **1d** and **1e** were consistently weaker. These results are somewhat different to the trend we observed for MRSA, where compound **1a** was the most active, suggesting that *Bacillus* may be more sensitive to lipophilicity within the C₃ alkoxy side chain.

To evaluate the effects of steric crowding at the C_3 center, 3,3-disubstituted lactams 1f—i were studied next.

The zone data in Table 2 for these sterically more crowded compounds indicate that the addition of lipophilicity at C₃ generally increases bioactivity, compared to the corresponding 3-monosubstituted lactam. Replacement of the C₃-alkoxy group for an acetoxy does not seem to alter bioactivity, as shown for lactam 1i, whereas incorporation of the alkoxy- and alkyl residues into a spirocyclic ring (lactam 1j)¹¹ significantly diminishes activity.

2.1. C₃-sulfonated lactams

Extending upon this survey of C₃-alkoxy- and acyloxy-substituted compounds, we tested three sulfonate-bearing derivatives **1k-m** (Table 3). Here, we found sizable differences in bioactivity which is dependent on the size (and lipophilicity) of the sulfonyl side chain. Whereas the methanesulfonyl compound **1k** is only weakly active against six of the seven *Bacillus* microbes, and totally inactive against *B. megaterium*, the phenylsulfonyl and toluenesulfonyl variants **1l** and **1m** are appreciably more active against *B. anthracis*.

2.2. C₃-amino β-lactams

The trends observed thus far for lactams 1a–m strongly suggest that polar side chains at C_3 have a detrimental influence on anti-anthracis activity. This pattern is also observed for C_3 -amino-substituted analogues 1n–q, of which only N-benzylamino compound 1o possesses any bioactivity. This parallels what we found previously for MRSA (Table 4).

2.3. C₃-halogenated β-lactams

Our previous investigations have found that replacement of the C_3 methoxy substituent of lactam 1a for a chloro group (1r) slightly increases antibacterial activity against MRSA, while replacement of methoxy for

Table 1. Bioactivities of C₃-alkoxy- or acyloxy-substituted lactams 1a-E against Bacillus bacteria determined by the Kirby-Bauer method of well diffusion on agar plates

Compound	B. anthracis	B. globigii	B. thuringensis	B. megaterium	B. coagulans	B. subtilis	B. cereus
1a	25	18	19	16	20	18	21
1b	27	20	20	22	21	19	23
1c	27	24	19	20	19	18	22
1d	20	15	15	15	15	13	19
1e	20	18	11	12	18	13	19

Twenty micrograms of test compound in DMSO solution was used in each case. The values indicate the average diameters in mm (of three trials) for the zone of growth inhibition obtained for each compound after 24 h of incubation at 37 $^{\circ}$ C, with a margin of error of ± 1 mm.

Table 2. Bioactivities of C₃-disubstituted lactams 1f-j against *Bacillus* bacteria determined by the Kirby-Bauer method of well diffusion on agar plates

Compound	B. anthracis	B. globigii	B. thuringensis	B. megaterium	B. coagulans	B subtilis	B. cereus
1f	29	25	20	22	20	21	22
1g	30	nd	nd	nd	nd	nd	nd
1h	20	15	16	16	15	13	18
1i	29	20	nd	21	20	19	15
1j	14	10	9	9	13	0	17

Twenty micrograms of test compound in DMSO solution was used in each case. The values indicate the average diameters in mm (of three trials) for the zone of growth inhibition obtained for each compound after 24 h of incubation at 37 °C, with a margin of error of ±1 mm (nd, not determined).

Table 3. Bioactivities of C₃-sulfonated lactams 1k-m against Bacillus bacteria determined by the Kirby-Bauer method of well diffusion on agar plates

Compound	B. anthracis	B. globigii	B. thuringensis	B. megaterium	B. coagulans	B. subtilis	B. cereus
1k	10	8	10	0	10	10	14
11	18	15	13	15	nd	nd	nd
1m	19	12	11	11	13	12	13

Twenty micrograms of test compound in DMSO solution was used in each case. The values indicate the average diameters in mm (of three trials) for the zone of growth inhibition obtained for each compound after 24 h of incubation at 37 $^{\circ}$ C, with a margin of error of ± 1 mm (nd, not determined).

an iodo (1s) or azido (1t) group decreases activity. This is also observed for all seven of the *Bacillus* species (Table 5).¹²

Finally, we note that the C_3 unsubstituted lactam $\mathbf{1u}$, a compound with only weak anti-MRSA properties, has no in vitro activity against any of the *Bacillus* species tested. This may be due to a need for lipophilic groups at both the C_3 and C_4 centers, a feature that we now want to address.

3. C₄-substituted lactams

The role of the C₄ aryl group on anti-Bacillus activity of these N-methylthio lactams was studied by varying the ortho-chlorophenyl group for other substituents. First, we varied the halogen, and then its location on the aryl ring. For the ortho-substituted series of lactams 2a–e, there is very little if any difference in bioactivity versus that of the chlorophenyl lead compound 1a, indicating

Table 4. Bioactivities of C₃-amino-substituted lactams 1n-q against *Bacillus* bacteria determined by the Kirby-Bauer method of well diffusion on agar plates

Compound	B. anthracis	B. globigii	B. thuringensis	B. megaterium	B. coagulans	B. subtilis	B. cereus
1n	0	0	0	0	0	0	0
10	10	9	9	7	0	0	11
1p	0	0	0	0	0	0	0
1q	0	0	0	0	0	0	0

Twenty micrograms of test compound in DMSO solution was used in each case. The values indicate the average diameters in mm (of three trials) for the zone of growth inhibition obtained for each compound after 24 h of incubation at 37 $^{\circ}$ C, with a margin of error of ± 1 mm.

Table 5. Bioactivities of C₃-halogen-substituted lactams 1r-t against *Bacillus* bacteria determined by the Kirby-Bauer method of well diffusion on agar plates

Compound	B. anthracis	B. globigii	B. thuringensis	B. megaterium	B. coagulans	B. subtilis	B. cereus
1a	25	18	19	16	20	18	21
1r	22	22	18	20	15	18	21
1s	22	24	15	13	11	13	17
1t	20	14	14	11	15	14	17

Twenty micrograms of test compound in DMSO solution was used in each case. The values indicate the average diameters in mm (of three trials) for the zone of growth inhibition obtained for each compound after 24 h of incubation at 37 $^{\circ}$ C, with a margin of error of ± 1 mm.

that effects of electronegativity or lipophilicity of the substituent at this location of the ring are insignificant (Table 6).

Next, we varied the location of the aryl substituent and found that the *meta*-substituted lactams (2f-j) and *para*-substituted lactams (2k-n) possessed nearly identical bioactivities against the seven *Bacillus* species

2p

20

as that displayed by the initial *ortho*-substituted derivatives (Tables 7 and 8). On the other hand, the *meta*-nitrophenyl and *para*-acyloxyphenyl lactams (2j, 2o, and 2p, respectively) were the only ones having significantly different, and sporadic, activities among the seven *Bacillus* species. This overall invariance in activities of the halogen-substituted lactams was also observed for lactams (2q-x) bearing multiple halogen substituents at different positions of the aryl ring, as well as for the unsubstituted phenyl analogue 2y (Table 9).

Finally, we looked at analogues 3a–c which have the aryl moiety linked to the β -lactam ring through either an alkenyl, alkynyl, or a more flexible alkyl tether. Once again, each of these derivatives shows about the same anti-Bacillus bioactivity as any of the other C_4 -arylated compounds (Table 10).

Table 6. Bioactivities of ortho-aryl-substituted lactams 1a versus 2a-e against Bacillus bacteria determined by the Kirby-Bauer method of well diffusion on agar plates

Compound	B. anthracis	B. globigii	B. thuringensis	B. megaterium	B. coagulans	B. subtilis	B. cereus
1a	25	18	19	16	20	18	21
2a	25	18	19	17	15	12	20
2b	25	17	17	15	13	14	19
2c	22	16	17	14	17	17	18
2d	21	14	15	12	15	10	18
2e	nd	14	13	10	13	0	nd

Twenty micrograms of test compound in DMSO solution was used in each case. The values indicate the average diameters in mm (of three trials) for the zone of growth inhibition obtained for each compound after 24 h of incubation at 37 $^{\circ}$ C, with a margin of error of ± 1 mm (nd, not determined).

Table 7. Bioactivities of *meta*-aryl-substituted lactams **2f**-**j** against *Bacillus* bacteria determined by the Kirby–Bauer method of well diffusion on agar plates

Compound	B. anthracis	B. globigii	B. thuringensis	B. megaterium	B. coagulans	B. subtilis	B. cereus
2f	25	18	19	16	20	15	20
2g	25	19	18	17	18	12	20
2h	27	20	19	16	20	16	21
2i	22	19	15	14	13	14	19
2j	10	10	0	0	0	0	17

Twenty micrograms of test compound in DMSO solution was used in each case. The values indicate the average diameters in mm (of three trials) for the zone of growth inhibition obtained for each compound after 24 h of incubation at 37 $^{\circ}$ C, with a margin of error of ± 1 mm.

Table 8. Bioactivities of *para*-aryl-substituted lactams **2k**–**p** against *Bacillus* bacteria determined by the Kirby–Bauer method of well diffusion on agar plates

Compound	B. anthracis	B. globigii	B. thuringensis	B. megaterium	B. coagulans	B. subtilis	B. cereus
2k	20	19	20	18	15	10	0
21	20	17	17	15	16	10	18
2m	25	20	20	16	18	19	18
2n	22	20	19	17	22	18	23
20	20	19	16	15	10	19	15
2p	14	0	10	10	0	0	13

Twenty micrograms of test compound in DMSO solution was used in each case. The values indicate the average diameters in mm (of three trials) for the zone of growth inhibition obtained for each compound after 24 h of incubation at 37 $^{\circ}$ C, with a margin of error of ± 1 mm.

Table 9. Bioactivities of C₄-aryl-disubstituted lactams 2q-2y against *Bacillus* bacteria determined by the Kirby-Bauer method of well diffusion on agar plates

Compound	B. anthracis	B. globigii	B. thuringensis	B. megaterium	B. coagulans	B. subtilis	B. cereus
2q	24	16	17	19	14	12	19
2r	27	22	20	21	17	21	21
2s	22	20	18	20	20	15	20
2t	20	14	13	15	15	10	18
2u	25	20	17	16	18	13	20
2v	27	21	17	19	20	19	22
2w	26	20	19	22	18	17	21
2x	20	20	20	20	22	18	20
2y	21	14	15	11	14	12	18

Twenty micrograms of test compound in DMSO solution was used in each case. The values indicate the average diameters in mm (of three trials) for the zone of growth inhibition obtained for each compound after 24 h of incubation at 37 $^{\circ}$ C, with a margin of error of ± 1 mm.

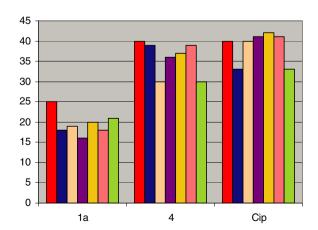
Table 10. Bioactivities of C₄-organoaryl-substituted lactams 3a-c against *Bacillus* bacteria determined by the Kirby-Bauer method of well diffusion on agar plates

Compound	B. anthracis	B. globigii	B. thuringensis	B. megaterium	B. coagulans	B. subtilis	B. cereus
3a	23	18	16	17	16	14	23
3b	20	15	14	12	17	11	20
3c	23	16	16	18	18	16	20

Twenty micrograms of test compound in DMSO solution was used in each case. The values indicate the average diameters in mm (of three trials) for the zone of growth inhibition obtained for each compound after 24 h of incubation at 37 $^{\circ}$ C, with a margin of error of ± 1 mm.

Table 11. Bioactivities of N-organothio-substituted lactams **1a** versus **4** and 5–7 against *Bacillus* bacteria determined by the Kirby–Bauer method of well diffusion on agar plates

Compound	B. anthracis	B. globigii	B. thuringensis	B. megaterium	B. coagulans	B. subtilis	B. cereus
1a	25	18	19	16	20	18	21
4	40	39	30	36	37	39	30
5	10	10	0	0	0	0	0
6	10	0	9	10	0	nd	nd
7	0	0	0	0	0	0	0
Cip	39	33	40	41	42	41	33


Twenty micrograms of test compound in DMSO solution was used in each case. The values indicate the average diameters in mm (of three trials) for the zone of growth inhibition obtained for each compound after 24 h of incubation at 37 $^{\circ}$ C, with a margin of error of ± 1 mm. Ciprofloxacin (Cip) is included as a reference (nd, not determined).

4. Effect of the *N*-organothio substituent on anti-*Bacillus* bioactivity

Previously, we reported that the antibacterial properties of N-thiolated β -lactams against MRSA are highly dependent upon the organothio substituent, in terms of both the nature of the organo chain as well as the oxidation state of the sulfur center. The most active derivative from this study was found to be the branched N-sec-butylthio lactam 4 (Table 1). Examination of 4 against the seven Bacillus bacteria likewise determined that this compound was significantly more active than N-methyl-

thio lactam 1a, with zone sizes being on average more than two times larger than those produced by 1a (Fig. 1).

Inspection of the actual plate from the Kirby–Bauer assay (Fig. 2) shows this clear distinction in activities be-

Figure 1. Comparison of anti-*Bacillus* activities of lactams **1a** and **4** to that of ciprofloxacin. Each colored bar represents, in sequential order, the seven *Bacillus* microbes listed in Table 11

tween lactams **1a** and **4** versus ciprofloxacin (Cip). This well diffusion experiment indicates that **4** is as potent a growth inhibitor of *Bacillus* spp. as the current clinical benchmark, ciprofloxacin. The minimum inhibition concentration (MIC) values for lactams **1a** and **4** against both the avirulent Sterne and virulent Ames strains of *B. anthracis* were determined by broth microdilution to be 4 and 0.5 µg/ml, respectively.¹³

Another interesting finding is that the more highly oxidized N-sulfinyl analogue $\mathbf{5}$, ¹⁴ N-sulfonyl lactam $\mathbf{6}$, ¹⁴ and N-sulfonate compound $\mathbf{7}$ are all significantly weaker in activity than the N-methylsulfenyl lactam $\mathbf{1a}$.

In this study, we have discovered a new family of antibacterial agents for *B. anthracis* and other *Bacillus* species. The structure–activity profiles of these N-thio-

Figure 2. Kirby–Bauer disk diffusion assay comparing the relative effectiveness of lactams **1a**, **4**, and ciprofloxacin (Cip). Twenty micrograms of each compound in DMSO solution was used.

lated β-lactams mirror to a large extent those observed previously for MRSA, with some notable exceptions. In general, lipophilic acyloxy or alkoxy groups at C₃ of the lactam ring lead to the strongest growth inhibition properties against each of the seven Bacillus microbes examined. The C₃ allyloxy and propoxy compounds were on average slightly more active than the parent C₃ methoxy derivative. Spirocyclic ethers at C₃ gave lower activity than the open chain variants. At the C₄ center, both aryl and strain chain organoaryl moieties were found to be about equally potent, regardless of the presence of unsaturation or aryl ring substituents. The most important determinant of anti-Bacillus activity, as in the case for MRSA, was found to be the Norganothio moiety, with the sec-butylthio compound 4 having the best overall bioactivity. The mode of action of these lactams in Bacillus most likely parallels that in Staphylococcus, with transfer of the N-organothio substituent from the lactam to a cellular thiol occurring within the cytoplasm of the bacterium. A more complete study on the mechanism of action of these compounds is underway to identify the target and reasons for bacterial species selectivity.

Acknowledgments

We thank the National Institutes of Health for funding (AI 51351). We also thank Vicki Luna at the University of South Florida Center for Biodefense for carrying out biological assays against virulent Ames strain of *B. anthracis*.

Supplementary material

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2006.01.070.

References and notes

- 1. Smith, H.; Keppie, J. Nature 1954, 173, 869.
- 2. Margulis, L. Natural History 2005, 6, 28.
- Moayer, M.; Leppler, S. H. Curr. Opin. Microbiol. 2004, 7, 19.
- Lim, D. V.; Simpson, J. M.; Kearns, E. A.; Kramer, M. F. Clin. Microbiol. Rev. 2005, 18, 583.
- 5. Friedlander, A. M. Nature 2001, 414, 160.
- Turos, E.; Konaklieva, M. I.; Ren, R. X. F.; Shi, H.; Gonzalez, J.; Dickey, S.; Lim, D. *Tetrahedron* 2000, 56, 5571.
- Turos, E.; Long, T. E.; Konaklieva, M. I.; Coates, C.; Shim, J.-Y.; Dickey, S.; Lim, D. V.; Cannons, A. Bioorg. Med. Chem. Lett. 2002, 12, 2229.
- 8. Turos, E.; Coates, C.; Shim, J. Y.; Wang, Y.; Leslie, J. M.; Long, T. E.; Reddy, G. S. K.; Ortiz, A.; Culbreath, M.; Dickey, S.; Lim, D. V.; Alonso, E.; Gonzalez, J. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 6289, and references therein.
- 9. Heldreth, B.; Long, T. E.; Jang, S.; Reddy, G. S. K.; Turos, E.; Dickey, S.; Lim, D. V. *Bioorg. Med. Chem.* **2006**, in press.
- Coates, C.; Long, T. E.; Turos, E.; Dickey, S.; Lim, D. V. Bioorg. Med. Chem. 2003, 11, 193.
- 11. Spirocyclic lactam 1j was tested as a single enantiomer with absolute stereochemistry as shown.